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Orthogonality
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Orthogonal vectors
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a0 Algebra

Two vectors u and v in R™ are orthogonal (to each other) if u-v = 0.

Suppose V is an inner product space.
Two vectors v,w € V are called orthogonal if (v,w) = 0.

The Pythagorean Theorem
Two vectors u and v are orthogonal if and only if ||u + v||? = [|u]|? + ||v]|?
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Orthogonal Sets

O A set of vectors {a4, ..., a;} in R™ is orthogonal set if each pair of distinct
vectors is orthogonal (mutually orthogonal vectors).

Definition

A basis B of an inner product space V is called an orthonormal basis of V if
a) (vyw)=0forallv+wE€B, and (mutual orthogonality)

b) ||v||=1forallv €B. (normalization)

set of n—vectors ay, ..., ay are (mutually) orthogonal if a; L a; for i # j
They are normalized if ||a;|| = 1fori=1,..,k

They are orthonormal if both hold

o0 o0 o

Can be expressed using inner products as

1 i=j
T —
ai“]"{o i #j
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Orthogonal Sets

Example

L Zero vector is orthogonal to every vector in vector space V
[ The standard basis of R™ or C" is an orthogonal set with respect to the
standard inner product.
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Orthogonal Sets

Theorem

If S ={a4, ..., a;} is an orthogonal set of nonzero vectors in R™, then S is
linearly independent and is a basis for the subspace spanned by S.

Proof
If k = n, then prove that S is a basis for R™

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 7



Linear combinations of orthonormal vectors

Corollary

L A simple way to check if an n—vector vy is a linear combination of the
orthonormal vectors ay, ..., a, if and only if:

y=(aly)a; + ... + (aby)a
O For orthogonal vectors aq, ..., a:

y =caq+ -+ cpag

V. Clj
aj.aj

Cj=
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Orthonormal vectors

Independence-dimension inequality

If the n-vectors a4, ..., a; are linearly independent, then k < n.

O Orthonormal sets of vectors are linearly independent
O By independence—dimension inequality, must have k < n

a When k =n,aq,...,a, are an orthonormal basis
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Orthonormal bases

Example

O Standard unit n-vectors eq, .., e,

O The 3-vectors
0|, —| 11, — -1
—1 V2 0 V2 0

L The 2-vectors shown below

-

U The standard basis in B,(x) [—1,1] (be the set of real-valued
polynomials of degree at most n.)
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Linear combinations of orthonormal vectors

Example

Write x as a linear combination of a4, a,, as?

x:2,a1: O,a2=—1,a3=——1
3 -1 ﬁ() V2 0
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Orthogonal Subspaces

Definition

U Two subspaces W, and W, of the same space V are orthogonal, denoted by
W, L W,, if and only if each vector w; € W, is orthogonal to each vector
w, € W, for all wy,w, in W;, W, respectively:

<wy,w,>=0

Example
If the bases of two subspaces are orthogonal, it implies that the subspaces

themselves are orthogonal.
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Orthogonal Complements

Definition

U If a vector z is orthogonal to every vector in a subspace W of R™, then z is
said to be orthogonal to W.

[ The set of all vectors z that are orthogonal to W is called the orthogonal
complement of W and is denoted by W+

Example —
W be a plane through the origin in R3. ™~ "
L=Wtand W =Lt 0
Z
L
/(
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Orthogonal Complements

Theorem

W+ is a subspace of R™.

Theorem
witnw ={0}.

Important

We emphasize that W; and W, can be orthogonal without being complements.
W; = span((1,0,0)) and W, = span((0,1,0)).
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Gram—Schmidt (orthogonalization) algorithm

0 Find orthonormal basis for span {ay, a,, ..., ax}

0 Geometry:

CE282: Linear Algebra

4|

q1
V 7 az

g1 i

a2 —(c}'f:rgh;r]

i 2
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Gram—Schmidt (orthogonalization) algorithm

0 Find orthonormal basis for span {ay, a,, ..., ax}

o Algebra:
il = ||:||
2)q; = a —(q10)q1 = G2 = ”Z:j”
3)qz =as — (qlTag)Ch - (q2Ta3)q2 = (3 = ”Z:i”
K) Tk = ax — (@] @) qr — = — (k-1 ) k-1 = W= %
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Gram—Schmidt (orthogonalization) algorithm

Example

1 1 2
Find orthogonal set fora = |0]|,b =10],c=|1
1 0 0
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Gram—Schmidt (orthogonalization) algorithm

0 Why {q4, 95, ..., qxl is a orthonormal basis for span {a;, a,, ..., a;l?

o 191,93, ..., qx} are normalized.
o 191,95, ..., qxl is a orthogonal set
o a; is a linear combination of {q4, q5, ..., q;]

spanlqy, qa, ..., q} = spanlay, ay, ..., ayl

Q gq; is a linear combination of {aq, a,, ..., a;}
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Gram—Schmidt (orthogonalization) algorithm

a Given n—vectors aq, ..., ai

fori=1,..,k
i.  Orthogonalization: §; = a; — (q1 a;))q1 — - — (q{—1a;)qi_1
2. Test for linear dependence: if g; = 0, quit
3. Normalization: gq; = IIZ:EII

Note

» If G-S does not stop early (in step 2), aq, ..., a, are linearly independent.

* If G-S stops early in iteration i = j, then a; is a linear combination of
Ay, -, 4j_q (so ay, ..., a; are linearly dependent)

a; = (g7 a;)qq + -+ (4]-19;)qj-1
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Complexity of Gram—Schmidt algorithm

0 Gram-Schmidt algorithm gives us an explicit method for
determining if a list of vectors is linearly dependent or
independent.

a0 What is complexity and number of flops for this algorithm?
o 0(nk?) why?
a Given n—vectors a4, ...,a; fori =1, ..,k
i.  Orthogonalization: §; = a; — (q1 a;))q1 — - — (q—1a;)qi_1

2. Test for linear dependence: if g; = 0, quit
qi
gl

3. Normalization: gq; =
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Orthonormal basis

Corollary

Every finite—dimensional inner product space has an orthonormal basis.
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Conclusion

Existence of Orthonormal Bases

L Every finite—dimensional inner product space has an orthonormal basis.

O Since finite—dimensional inner product spaces (by definition) have a basis
consisting of finitely many vectors, and the Gram—Schmidt process tells us
how to convert that basis into an orthonormal basis, we now know that

every finite—dimensional inner product space has an orthonormal basis.
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Example

Example

Find an orthonormal basis for P,(x) in [—1, 1] with respect to the inner
product

1
(f,g) = J_lf(x)g(x)dx
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Projection

O Finding the distance from a point B to line [ = Finding the length of
line segment BP

] i)
L]

O AP: projection of AB onto the line [

Definition
If u and v are vectors in R™ and u # 0, then the projection of v onto u is the
vector proj,(v) defined by Ay
u-v \
r0jy(V) = |——]u \
proju(v) (u : u) \ :

*

The projection of v onto u
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Orthogonal Projection of y onto W

The Orthogonal Decomposition Theorem
Let W be a subspace of R™. Then each y in R™ can be written uniquely in the

form: .
_ P1O] ), ¥
y —Oi z (1)

where ¥ is in Wand z is in W*. In fact, if {u,, ...,up} is any orthogonal basis of

W, then

y-uy y-up
u1+---+—up (2>
ul.ul up'up

y
andz=y — ¥y

Important

The uniqueness of the decomposition (1) shows that the
orthogonal projection ¥ depends only on W and not on the W

particular basis used in (2).

V= proj,y

The orthogonal projection of ¥ onto W,
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Orthogonal Projection of y onto W

Theorem
Let W be a subspace of V. Then each u in IV can be written in the form:
u=y+y
y projection u on W
Proof
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Orthogonal Decomposition Theorem

Theorem

Let W be a subspace of V. Then for any vector v in V, there exists a unique
vector w in W, and a unique vector z in W+, such that v = w + z. The vector w
is called the orthogonal projection of v onto W.

Proof
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Orthogonal Matrix

Note

O Columns of A are orthonormal & ATA =1

0 Square matrix with orthonormal columns is a orthogonal matrix

o Columns and rows are orthonormal vectors
o ATA = AAT =]

o is necessarily invertible with inverse AT = A™1
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Orthogonal Matrix

Example

Q Identity matrix ITI =1

O Rotation matrix

cosf sin 9] [cos 6 —sinf] _

T — —
kR [—sin@ cosf@]|lsinf coséd

[ cos?0 + sin?6 —cos0sinf + Siné?cosH] _ [1 0] _ I
—sinfcosf + cosOsinb sin%0 + cos?6 0 1
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Orthogonal Matrix

Example

UReflection matrix

cos(20) sin(26) T cos(28) sin(260) 1 _
sin(260) —cos(ZH)l [sin(ZQ) —cos(20)]

cos? (260) + sin?(26) cos (26) sin(26) — sin(260) cos(26)| _[1 0] _ ;
sin(26) cos(26) — cos(26) sin(20) sin2(26) + cos? (260) B lO 1]

Lemma

All orthogonal matrices can be expressed as Rotation or Reflection
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Orthonormal Columns Properties

Note
If A € R™ ™ has orthonormal columns, then the linear function f(x) = Ax

O Preserves inner product:

(Ax)T(Ay) = x"y

[ Preserves norm: This is a mapping with preserving
properties of input
|Ax|| = [|x]]
1 Preserves distances:

|Ax — Ay|| = ||x — y||

O Preserves angels:

(40)"(4y) i
L ) = B (nAfcnnA;vn) — arccos (||x7|||yy||) = 4(xy)
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Gram—Schmidt in matrix notation

Important

Run Gram—-Schmidt on columns ay, ..., a; of n X k matrix A:

~

_ q1
G, Il
= a; = [|§11lq,

qd1 = a4, q1

~

~ q>
q> = 4 — (q{aZ)qll qz= ||q2||

= a, = (g1 ay)q; + 1132 1lq;

N

i

11l

~

Gi = a; — (g1 a)qy — -+ — (a]-1:)qi-1, 1=

a; = (qTa)q, + -+ (q_1a;)qi—1 + 1G;llq;
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Review

a0 Matrix—Matrix Multiplication

As a set of matrix—vector products.

| | | I
C=AB=A|by b, -+ by|=|4Aby Ab, - Ab,

Here the th column of C is given by the matrix—vector product with the vector on the right, ¢; = Ab;. These matrix—
vector products can in turn be interpreted using both viewpoints given in the previous subsection.

a Matrix—Vector Multiplication

If we write A by columns, then we have:

| ]y
o VY is a linear combination of the columns A.

X1
e
y=Ax=|a; ay - apf| . |= [a;]xy + [az]x, + -+ [ag]x;, .
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Gram—Schmidt in matrix notation

Important

a; = 1G1llq,
a, = (q1a2)q; + 1132112

a = (@1 ar)qs + -+ (Q£—1ak)CIk—1 + |Gk llqx

11l qia
U A
a1 ax .. ag]l=[91 92 - Qqk]| : :
0 0
0 0

Apxik = Qnxik X Rixk
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Gram—Schmidt in matrix notation

Important

1. Run Gram—Schmidt on columns ay, ..., a of n X k matrix A
If columns are linearly independent, get orthonormal g, ..., g;
Define n X k matrix Q with columns q4, ...,

Q'Q =1

From Gram—Schmidt algorithm

o s b

a; = (q]a)qy + -+ (q]_1a:)qi-1 + +11G:lq;
= Ryiq; + -+ Riiq;
With le = qlTa] for i <_] and Rii = “ql“

6. Defining R;; = 0 for i > j we have A = QR

7. R is upper triangular, with positive diagonal entries
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QR factorization

Definition

A factorization of a matrix A as A — QR where Factors satisfy QT Q = I, R upper triangular with positive diagonal

entries, is called a QR factorization of A.

Suppose A is a square matrix with linearly independent columns. Then there
exist unique matrices O and R such that O is unitary, R is upper triangular
with only positive numbers on its diagonal, and

il = QR R]k =< ak,qj>

Note

The QR factorization of a matrix :
L Can be computed using Gram—Schmidt algorithm (or some variations)

O Has a huge number of uses, which we’ Il see soon
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QR Decomposition (QU) (Factorization)

Important

To find QR decomposition:

UQ: Use Gram-Schmidt to find orthonormal basis for column space of A
QdLetR = Q74

DOR R]k =<< ag, q] >

QIfAisa square matrix, then @ is square with orthonormal columns (orthogonal matrix)
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QR Decomposition (QU) (Factorization)

Theorem

if AeR™ ™ has linearly independent columns then it can be factored as
A=0R

Q-factor
QQ is m x n with orthonormal columns (Q7Q = I)

Q If A is square (m = n), then Q is orthogonal (QTQ = QQT =1)

R-factor

O R is nx n, upper triangular, with nonzero diagonal elements
QO R is nonsingular (diagonal elements are nonzero)
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QR Decomposition

Example
-1 -1 1
_ |11 33
A=1.1 1 5
1 3 7
—-1 1 -
1| 1 11 =11 5 7 i
G =35|_1| 2 =3|1| 5 =; Mgl = 2,11g:1 = 2, 151l = 4
1 1 1
a0r: R
—i —é é 11 _1m o4 2
- 2 2 2
-1 -1 5|7|_1 1 g2 28
2 2 2
1 3 7 111
2 2 24
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Generalization of QR Decompose

Asxe = [%1_d2 a3 44 a5 Qg
‘4//
Linear Independent

( A, = a1191

Ay = Az1q1 + az29>

asz = az1qq + aszzq;
Ay = A41q1 + Q4292 + Q4373
as = As51qq + A52qQ2 + As5343
(d6 = Q6191 T A62q2 T Q6343

Block upper triangular matrix

aiq1 Qpq1 QA3z1 Q31 0451 QAgq
[a1 ax a3 a4 as Ggl=1[91 492 q3]| 0 ay,, a3, Qa2 Aasz Qe
0 0 0 As3 0As3  Ae3

Ayve = Q4X R3y6
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