

Orthogonality

Linear Algebra

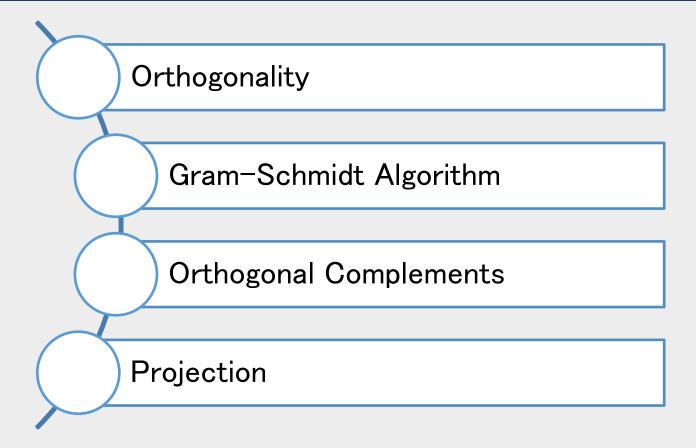
Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>

Maryam Ramezani maryam.ramezani@sharif.edu

Overview



Orthogonality

Orthogonal vectors

https://youtu.be/dqdSzqsm7bY

□ Algebra

Two vectors **u** and **v** in \mathbb{R}^n are **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.

Suppose *V* is an inner product space. Two vectors $\mathbf{v}, \mathbf{w} \in V$ are called **orthogonal** if $\langle \mathbf{v}, \mathbf{w} \rangle = 0$.

The Pythagorean Theorem

Two vectors **u** and **v** are orthogonal if and only if $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$

CE282: Linear Algebra

Orthogonal Sets

□ A set of vectors $\{a_1, ..., a_k\}$ in \mathbb{R}^n is orthogonal set if each pair of distinct vectors is orthogonal (mutually orthogonal vectors).

Definition

A basis B of an inner product space V is called an orthonormal basis of V if a) $\langle \mathbf{v}, \mathbf{w} \rangle = 0$ for all $\mathbf{v} \neq \mathbf{w} \in B$, and (mutual orthogonality) b) $\|\mathbf{v}\| = 1$ for all $\mathbf{v} \in B$. (normalization)

- □ set of n-vectors $a_1, ..., a_k$ are *(mutually) orthogonal* if $a_i \perp a_j$ for $i \neq j$
- **D** They are *normalized* if $||a_i|| = 1$ for i = 1, ..., k
- □ They are *orthonormal* if both hold
- **Can be expressed using inner products as**

$$a_i^T a_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

Example

Zero vector is orthogonal to every vector in vector space V
 The standard basis of Rⁿ or Cⁿ is an orthogonal set with respect to the standard inner product.

Theorem

If $S = \{a_1, ..., a_k\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and is a basis for the subspace spanned by S.

Proof

If k = n, then prove that S is a basis for R^n

Corollary

 \Box A simple way to check if an n-vector y is a linear combination of the orthonormal vectors a_1, \ldots, a_k , if and only if:

$$y = (a_1^T y)a_1 + \dots + (a_k^T y)a_k$$

 \Box For orthogonal vectors a_1, \ldots, a_k :

$$y = c_1 a_1 + \dots + c_k a_k$$

$$c_j = \frac{y \cdot a_j}{a_j \cdot a_j}$$

Independence-dimension inequality

If the n-vectors a_1, \ldots, a_k are linearly independent, then $k \leq n$.

- Orthonormal sets of vectors are linearly independent
- \Box By independence-dimension inequality, must have $k \leq n$
- \Box When $k = n, a_1, \dots, a_n$ are an *orthonormal basis*

Orthonormal bases

Example

□ Standard unit n-vectors $e_1, ..., e_n$ □ The 3-vectors

$$\begin{bmatrix} 0\\0\\-1 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \end{bmatrix}$$

□ The standard basis in $P_n(x)$ [-1,1] (be the set of real-valued polynomials of degree at most n.)

Example

Write x as a linear combination of a_1, a_2, a_3 ?

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ a_1 = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \ a_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ a_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Orthogonal Supspaces

Definition

□ Two subspaces W_1 and W_2 of the same space V are orthogonal, denoted by $W_1 \perp W_2$, if and only if each vector $w_1 \in W_1$ is orthogonal to each vector $w_2 \in W_2$ for all w_1, w_2 in W_1, W_2 respectively: $< w_1, w_2 > = 0$

Example

If the bases of two subspaces are orthogonal, it implies that the subspaces themselves are orthogonal.

Orthogonal Complements

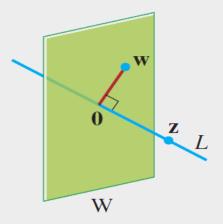
Definition

□ If a vector z is orthogonal to every vector in a subspace W of \mathbb{R}^n , then z is said to be orthogonal to W.

The set of all vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp}

Example

W be a plane through the origin in \mathbb{R}^3 . $L = W^{\perp}$ and $W = L^{\perp}$



Orthogonal Complements

Theorem

 W^{\perp} is a subspace of \mathbb{R}^n .

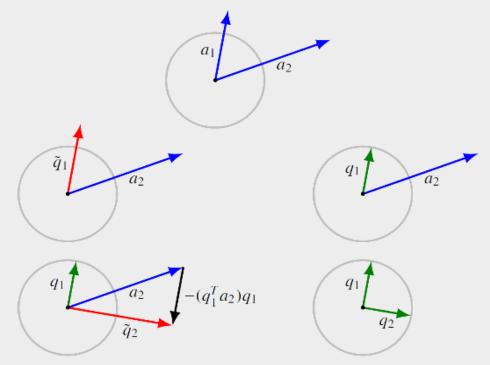
Theorem $W^{\perp} \cap W = \{\mathbf{0}\}$.

Important

We emphasize that W_1 and W_2 can be orthogonal without being complements. $W_1 = span((1,0,0))$ and $W_2 = span((0,1,0))$.

Gram-Schmidt Algorithm

- **\Box** Find orthonormal basis for span $\{a_1, a_2, \dots, a_k\}$
- □ Geometry:



- **\Box** Find orthonormal basis for span $\{a_1, a_2, \dots, a_k\}$
- □ Algebra:

1)
$$q1 = \frac{a_1}{\|a_1\|}$$

2)
$$\widetilde{q_2} = a_2 - (q_1^T a_2) q_1 \rightarrow q_2 = \frac{\widetilde{q_2}}{\|\widetilde{q_2}\|}$$

3)
$$\widetilde{q_3} = a_3 - (q_1^T a_3)q_1 - (q_2^T a_3)q_2 \to q_3 = \frac{\widetilde{q_3}}{\|\widetilde{q_3}\|}$$

k)
$$\widetilde{q_k} = a_k - (q_1^T a_k)q_1 - \dots - (q_{k-1}^T a_k)q_{k-1} \rightarrow q_k = \frac{\widetilde{q_k}}{\|\widetilde{q_k}\|}$$

CE282: Linear Algebra

.

Hamid R. Rabiee & Maryam Ramezani

Example

Find orthogonal set for
$$a = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $c = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$

- □ Why $\{q_1, q_2, ..., q_k\}$ is a orthonormal basis for span $\{a_1, a_2, ..., a_k\}$?
 - $\circ \{q_1, q_2, \dots, q_k\}$ are normalized.
 - $\circ \{q_1, q_2, \dots, q_k\}$ is a orthogonal set
 - a_i is a linear combination of $\{q_1, q_2, ..., q_i\}$

 $span\{q_1, q_2, ..., q_k\} = span\{a_1, a_2, ..., a_k\}$

 \Box q_i is a linear combination of $\{a_1, a_2, \dots, a_i\}$

 \Box Given n-vectors a_1, \ldots, a_k

for i = 1, ..., k

- 1. Orthogonalization: $\tilde{q}_i = a_i (q_1^T a_i)q_1 \dots (q_{i-1}^T a_i)q_{i-1}$
- 2. Test for linear dependence: if $\widetilde{q}_i = 0$, quit
- 3. Normalization: $q_i = \frac{\widetilde{q_i}}{\|\widetilde{q_i}\|}$

Note

- If G-S does not stop early (in step 2), a_1, \ldots, a_k are linearly independent.
- If G-S stops early in iteration i = j, then a_j is a linear combination of a_1, \ldots, a_{j-1} (so a_1, \ldots, a_k are linearly dependent) $a_j = (q_1^T a_j)q_1 + \cdots + (q_{j-1}^T a_j)q_{j-1}$

- Gram-Schmidt algorithm gives us an explicit method for determining if a list of vectors is linearly dependent or independent.
- □ What is complexity and number of flops for this algorithm? $\circ O(nk^2)$ why?
- $\Box \quad \text{Given n-vectors } a_1, \dots, a_k \text{ for } i = 1, \dots, k$
 - 1. Orthogonalization: $\tilde{q}_i = a_i (q_1^T a_i)q_1 \dots (q_{i-1}^T a_i)q_{i-1}$
 - 2. Test for linear dependence: if $\tilde{q_i} = 0$, quit
 - 3. Normalization: $q_i = \frac{\widetilde{q_i}}{\|\widetilde{q_i}\|}$

Corollary

Every finite-dimensional inner product space has an orthonormal basis.

Conclusion

Existence of Orthonormal Bases

- □ Every finite-dimensional inner product space has an orthonormal basis.
- □ Since finite-dimensional inner product spaces (by definition) have a basis consisting of finitely many vectors, and the Gram-Schmidt process tells us how to convert that basis into an orthonormal basis, we now know that every finite-dimensional inner product space has an orthonormal basis.

Example

Example

Find an orthonormal basis for $P_2(x)$ in [-1, 1] with respect to the inner product

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x)dx$$

Projection

- □ Finding the distance from a point *B* to line l = Finding the length of line segment *BP*
- \Box AP: projection of AB onto the line l

Definition

If u and v are vectors in \mathbb{R}^n and $\mathbf{u} \neq \mathbf{0}$, then the projection of v onto u is the vector $proj_{\mathbf{u}}(\mathbf{v})$ defined by

$$proj_{\mathbf{u}}(\mathbf{v}) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right)\mathbf{u}$$

e p

The projection of v onto u

Orthogonal Projection of y onto W

The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Then each **y** in \mathbb{R}^n can be written **uniquely** in the form:

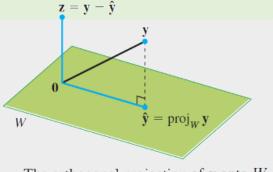
 $\mathbf{y} = (\hat{\mathbf{y}} + \mathbf{z}) \stackrel{\text{proj}_W \mathbf{y}}{\longrightarrow}$ where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$
(2)

and $z = \mathbf{y} - \hat{\mathbf{y}}$

Important

The uniqueness of the decomposition (1) shows that the orthogonal projection $\hat{\mathbf{y}}$ depends only on W and not on the particular basis used in (2).



The orthogonal projection of \mathbf{y} onto W.

Theorem

Let W be a subspace of V. Then each **u** in V can be written in the form:

 $u = \hat{y} + y$ $\hat{y} \text{ projection u on W}$

Proof

Theorem

Let W be a subspace of V. Then for any vector v in V, there exists a unique vector w in W, and a unique vector z in W^{\perp} , such that v = w + z. The vector w is called the orthogonal projection of v onto W.

Proof

Note

 $\Box \text{ Columns of A are orthonormal} \leftrightarrow A^T A = I$

Square matrix with orthonormal columns is a **orthogonal matrix**

- o Columns and rows are orthonormal vectors
- $\circ \quad A^T A = A A^T = I$
- \circ is necessarily invertible with inverse $A^T = A^{-1}$

Example

 $\Box \quad \text{Identity matrix} \quad I^T I = I$

Rotation matrix

$$R^{T}R = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} =$$

$$\begin{bmatrix} \cos^2\theta + \sin^2\theta & -\cos\theta\sin\theta + \sin\theta\cos\theta \\ -\sin\theta\cos\theta + \cos\theta\sin\theta & \sin^2\theta + \cos^2\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Orthogonal Matrix

Example

□Reflection matrix

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}^{T} \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} = \begin{bmatrix} \cos^{2}(2\theta) + \sin^{2}(2\theta) & \cos(2\theta) \\ \sin(2\theta)\cos(2\theta) - \cos(2\theta)\sin(2\theta) & \sin^{2}(2\theta) + \cos^{2}(2\theta) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} =$$

Lemma

All orthogonal matrices can be expressed as Rotation or Reflection

Т

Note

If $A \in \mathbb{R}^{m \times n}$ has orthonormal columns, then the linear function f(x) = Ax

Preserves inner product:

$$(Ax)^T(Ay) = x^T y$$

Preserves norm:

 $\|Ax\| = \|x\|$

□ Preserves distances:

$$||Ax - Ay|| = ||x - y||$$

□ Preserves angels:

$$\angle (Ax, Ay) = \arccos\left(\frac{(Ax)^T(Ay)}{\|Ax\|\|Ay\|}\right) = \arccos\left(\frac{x^Ty}{\|x\|\|y\|}\right) = \angle (x, y)$$

This is a mapping with preserving properties of input

Important

Run Gram-Schmidt on columns $a_1, ..., a_k$ of $n \times k$ matrix A:

$$\begin{split} \tilde{q}_1 &= a_1, \qquad q_1 = \frac{\tilde{q}_1}{\|\tilde{q}_1\|} \\ & \Longrightarrow a_1 = \|\tilde{q}_1\| q_1 \end{split}$$

$$\begin{split} \tilde{q}_{2} &= a_{2} - (q_{1}^{T}a_{2})q_{1}, \quad q_{2} = \frac{\tilde{q}_{2}}{\|\tilde{q}_{2}\|} \\ &\Rightarrow a_{2} = (q_{1}^{T}a_{2})q_{1} + \|\tilde{q}_{2}\|q_{2} \\ \vdots \\ \tilde{q}_{i} &= a_{i} - (q_{1}^{T}a_{i})q_{1} - \dots - (q_{i-1}^{T}a_{i})q_{i-1}, \qquad q_{i} = \frac{\tilde{q}_{i}}{\|\tilde{q}_{i}\|} \\ &a_{i} &= (q_{1}^{T}a_{i})q_{1} + \dots + (q_{i-1}^{T}a_{i})q_{i-1} + \|\tilde{q}_{i}\|q_{i} \end{split}$$

Matrix-Matrix Multiplication

As a set of matrix-vector products.

$$C = AB = A \begin{bmatrix} | & | & | \\ b_1 & b_2 & \cdots & b_p \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ Ab_1 & Ab_2 & \cdots & Ab_p \\ | & | & | \end{bmatrix}$$

Here the *i*th column of C is given by the matrix-vector product with the vector on the right, $c_i = Ab_i$. These matrix-vector products can in turn be interpreted using both viewpoints given in the previous subsection.

□ Matrix-Vector Multiplication

If we write A by columns, then we have:

$$y = Ax = \begin{bmatrix} | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = [a_1]x_1 + [a_2]x_2 + \cdots + [a_n]x_n .$$

 \circ y is a linear combination of the columns A.

CE282: Linear Algebra

Important

 $a_1 = \|\tilde{q}_1\|q_1$

$$\begin{aligned} &a_2 = (q_1^T a_2) q_1 + \| \tilde{q}_2 \| q_2 \\ &\vdots \\ &a_k = (q_1^T a_k) q_1 + \dots + \left(q_{k-1}^T a_k \right) q_{k-1} + \| \tilde{q}_k \| q_k \end{aligned}$$

$$\begin{bmatrix} a_1 & a_2 & \dots & a_k \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \dots & q_k \end{bmatrix} \begin{bmatrix} \|\tilde{q}_1\| & q_1^T a_2 & \dots & q_1^T a_k \\ 0 & \|\tilde{q}_2\| & \dots & q_2^T a_k \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q_{k-1}^T a_k \\ 0 & 0 & \dots & \|\tilde{q}_k\| \end{bmatrix}$$

$$A_{n \times k} = Q_{n \times k} \times R_{k \times k}$$

Important

- 1. Run Gram-Schmidt on columns $a_1, ..., a_k$ of $n \times k$ matrix A
- 2. If columns are linearly independent, get orthonormal q_1, \dots, q_k
- 3. Define $n \times k$ matrix Q with columns q_1, \dots, q_k
- $4. \quad Q^T Q = I$
- 5. From Gram-Schmidt algorithm

$$\begin{aligned} a_i &= (q_1^T a_i)q_1 + \dots + \left(q_{i-1}^T a_i\right)q_{i-1} + \|\tilde{q}_i\|q_i\\ &= R_{1i}q_1 + \dots + R_{ii}q_i\\ \end{aligned}$$

With $R_{1j} = q_i^T a_j$ for $i < j$ and $R_{ii} = \|\tilde{q}_i\|$

- 6. Defining $R_{ij} = 0$ for i > j we have A = QR
- 7. R is upper triangular, with positive diagonal entries

CE282: Linear Algebra

Definition

A factorization of a matrix A as A = QR where Factors satisfy $Q^TQ = I$, R upper triangular with positive diagonal

entries, is called a **QR factorization** of A.

Suppose A is a square matrix with linearly independent columns. Then there exist unique matrices Q and R such that Q is unitary, R is upper triangular with only positive numbers on its diagonal, and

$$A = QR. \qquad \qquad R_{jk} = \langle a_k, q_j \rangle$$

Note

The QR factorization of a matrix :

- **C**an be computed using Gram-Schmidt algorithm (or some variations)
- Has a huge number of uses, which we'll see soon

Important

- To find QR decomposition:
- $\Box Q$: Use Gram-Schmidt to find orthonormal basis for column space of *A* $\Box \text{Let } \mathbf{R} = \mathbf{Q}^T \mathbf{A}$
- $\Box OR: \quad R_{jk} = < a_k, q_j >$

 \Box If A is a square matrix, then Q is square with orthonormal columns (orthogonal matrix)

Theorem

if $A \in \mathbb{R}^{m \times n}$ has linearly independent columns then it can be factored as

A = QR

Q-factor

□*Q* is $m \times n$ with orthonormal columns $(Q^T Q = I)$ □ If *A* is square (m = n), then *Q* is orthogonal $(Q^T Q = QQ^T = I)$

R-factor

 \square *R* is n× *n*, upper triangular, with nonzero diagonal elements \square *R* is nonsingular (diagonal elements are nonzero)

QR Decomposition

Example

$$A = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix}$$
$$q_1 = \frac{1}{2} \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, q_2 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, q_3 = \frac{1}{2} \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, \|\tilde{q}_1\| = 2, \|\tilde{q}_2\| = 2, \|\tilde{q}_3\| = 4$$

QR :

$$\begin{bmatrix} -1 & -1 & 1\\ 1 & 3 & 3\\ -1 & -1 & 5\\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2}\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 & 4 & 2\\ 0 & 2 & 8\\ 0 & 0 & 4 \end{bmatrix}$$

CE282: Linear Algebra

Generalization of QR Decompose

$$A_{4\times 6} = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \end{bmatrix}$$

Linear Independent

$$\begin{pmatrix}
a_1 = a_{11}q_1 \\
a_2 = a_{21}q_1 + a_{22}q_2 \\
a_3 = a_{31}q_1 + a_{32}q_2 \\
a_4 = a_{41}q_1 + a_{42}q_2 + a_{43}q_3 \\
a_5 = a_{51}q_1 + a_{52}q_2 + a_{53}q_3 \\
a_6 = a_{61}q_1 + a_{62}q_2 + a_{63}q_3
\end{pmatrix}$$

Block upper triangular matrix

$$\begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} a_{11} & a_{21} & a_{31} & a_{41} & a_{51} & a_{61} \\ 0 & a_{22} & a_{32} & a_{42} & a_{52} & a_{62} \\ 0 & 0 & 0 & a_{43} & a_{53} & a_{63} \end{bmatrix}$$
$$A_{4 \times 6} = Q_{4 \times 3} \times R_{3 \times 6}$$

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

- Chapter 1: Advanced Linear and Matrix Algebra, Nathaniel Johnston
- □ Chapter 6: Linear Algebra David Cherney
- Linear Algebra and Optimization for Machine Learning
- Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares